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Abstract -This paper proposes two mat~en~~t~ca~ models giving possibility to study the mechanism of 
batch drying. Tfte first part d4s with the in%.zence of the changing properties of the drying medium 
and &he sefond wnsiders the ~~~~e~ce d tfie gradients in the CFZXS Se&cm. The prop& moddds we 

Suit&k for sfudy of drying of f%Gte plate under changing and ~~n-l~R~r~~~ sorption properties. The 
numericat sofutions are ilfustrated by examples cafcutated by computer. 

NOMENCLATURE 

temperature conductivity [m’/h]; 

specific he& [kcal/kg%J; 
concentration [kg/m’] I 
measure [ml; 

factor defined by equation (7) 
[dimensionless]; 
measure [m]; 
entha~~y [k&/kg] ; 
over-all heat-transfer coeficient 

[kca&‘m’ h T]; 
partial pressure [Hg mm]; 
heat flux (kcal/m2 II]; 
latent heat [kcaI/I&J; 
temperature t”C] ; 
moisture cuntent of drying medium 
[kg moisture/kg dry air); 
co-ordinate [ml; 
co-ordinate [m]; 
diffusion coefficient [m”/hf; 
surface [m ‘1: 
mass of moist body [kg]; 

rate of drying [kg/m2 h]; 
moisture content of the moist body 
[kg/maisture/kg dry material] I 
heat-transfer coefEcient fkcal/m* h “C]; 
Emit of the error rd~m~nsionle~]; 
thermal conductivity [kcaI/m h “C] ; 
density [kg/m3]; 
coefficient of the evaporation [kg/m h]; 
time [II]; 
sign of function defined by equation (6); 
sign of fi.mction defined by equation (7); 

5, = 2 , dimensionless concentration; 
CO 

si, Biot number; 
FO, Fourier number; 

Le, Lewis number; 

LU, Luikov number. 

SUbSCriptS 

equilibrium value; 
reference to the surface; 
gas ; 
conductive; 
criticai; 
convective; 
reference to the drying medium; 
mass ; 
moist material; 
wet air; 
reference to the zero temperature [“Cl; 
vapor under constant pressure; 
heat; 
volume of dry mat&$; 

saturation; 
wet. 

THE BATON drying is a chemical operation frequeatiy 
used in the chemical industry especially for materials 
which need 8 long drying period, e.g. brick, wood etc. 
At the batch drying the moisture content profiles and 
the distribution of the temperature in the moist body 
genera@ depend on the time, because the temperature 

ratio of the re~~r~u~at~o~ rd~rne~~on~e~]; and the moisture content of the medium as welI as 

measure of the step [m or h]; the rate of the mass and heat transfer are changing. 

= 1”, , dimensionless temperature; 

The present paper gives methods to find temperature 
profiles and the moisture content field, so two models 
are proposed for batch drying. 

669 



670 M. PARTI and B. PALANCZ 

These models have different neglect namely (i) model 
one neglects the influence of the concentration and 
the thermal gradient being in the moist body in the 
cross-section; and (ii) model two neglects the changes 
of the properties of the surrounding medium. 

The results obtained are demonstrated by numerical 

examples using computer. 

where 

therefore 

dG,= = z dQ.,..pszt = dVp,zz. 

Mass balance for the moisture in the surrounding 

medium 
MODEL ONE 

In a previous paper [l] we neglected the changes 

of the properties-the temperature and moisture con- 
tent-of the surrounding medium. Sometimes this is 

possible, e.g. using a respectable mass of the drying 
medium, but sometimes is not. 

In the first part of this paper we develop a mathemat- 
ical model considering these changes. In the numerical 

example we shall see that remarkable moisture and 
temperature gradients arising from these changes will 

be carried out in the moist body in the direction of 

the flow of drying medium. These gradients are able 
to damage the structure of the body by the increased 

stress. 

Analysis 

Considering an elementary section of the drying 
eqllipment (Fig. 1) the heat and mass balances can be 
written. 

Fro. 1. Sketch of the basic model. 

Mass balance for the moisture in the body: 

Where the groups on the left-hand of the equation 

mean the mass of the moisture carried into the section 
by the drying medium in the elementary time; the mass 

of the moisture being in the section at the beginning 

of the elementary term, and the mass of the moisture 
evaporated into the section during the elementary term. 

Forthcoming we shall use this order. 

Because 

therefore 

(2) 

The heat balance for the surrounding medium: 

LiLdr+ehdyp,iL+Nirdf,dr = L 

c eh dypc 
i. iiL j 

IL + z dt + a& - rr) df, dr. 

On the right-hand the third group is the heat trans- 
ported towards the body. As well known: 

ir. = (~~~+.~~c~~)t~ir~.~~, 

so 

where 

(‘A = cp, + x, cpwc 

the heat capacity of the moist air. 
enthalpy of the drying medium on 
surface: 

1,z = ro+CpW(;tF 

Considering the 
the evaporating 

and using (2) after reduction we obtain: 

- Lc#& f.5 = cif&L - tF) + NCpW&. -IF) 
?b 

dG,=X = Ndf,dr+dG,, XSPZdr > 
( (7x j 
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so considering (2) we can obtain: 

XL(~+&, r) = XL(~, 5) 

671 

The heat balance for the moist body: 

dGJ,, + hd + qs) dfp dT 

= dG,,(i,+%dr)+NdhiFdT. 

We suppose a linear relation between the heat capacity 
of the moist body and the moist content: 

i”, = (Gz + Xcw)tn., 

and 

where 

di,, = c,. dt., + cwt,. dX, 

C na = c,,+xcw. 

Further it should be assumed that the temperature and 
the moisture content are constant in direction z: 

t, = tF. 

Using these equations and the heat balance for the 

boundary layer [l] can be written: 

ZP,,rc, g = ak&L - h) + kkd(tkd - tF) 

- N(r0 + CPWG tL - CW G). (4) 

In order to complete this system (l)-(4) we assume the 
following relations: 

N = Q(xF-xL)f, (5) 

where 

XF = &F), (6) 
and 

f = Y(X). (7) 

It is advisable to determine the later relation by 
measurement, although there is possibility to use some 

approaching ideas, too. Finally we do repeat that 
we have supposed there was not thermal either con- 

centration gradient in the moist body rectangular to 
the flow of the drying medium. 

The initial and boundary conditions 
In order to get the solution we have to know the 

following conditions: 

X(h>O) = x0, 

XL@, 7) = XLb, 

%.(fe,o) = XLb, 

@, 7) = tLb, 

h.(fh,O) = ho, 

tF (fe , 0) = tFo . 

Numerical solution 
We can solve this system in the following way: 

axL 
~(h~7) = 

x&2+Are,z)--~(fe>~) 
(8) 

e A@ 

? 
N(P,r)+G$(jkT) 1 (9) 

where 

ax, 
jp>7) = 

x~(~,T+&)--L(~P>~) 

A, 
(10) 

N(fe,~)=o[x~(~,T)-X~(fP,T)lf(fr,T) (11) 

xF(fe, 7) = (P[tF(fe, T)l. (12) 

The other equations can be transformed into differ- 

ence equations in the same way. 
While solving numerically, sufficiently increment 

size was used to achieve a desired accuracy. 
As an illustration a numerical example is carried out 

with the following dates: 

X0 = 0.25 kg moisture/kg dry material 

xLb = 0.04 kg moisture/kg dry air 
tLb = 120°C 
t F. = 20°C 
akv = 20 kcal/m’ h “C 

IS = 80 kg/m2 h 
y,,, = 2.5 m 

z = 0.06 m 

e = 0.12m 
h=O.lm 

L = 144 kg/h 
cd = 0.25 kcal/kg “C 

c,, = 0.21 kcal/kg “C 
cw = 1 kcal/kg “C 

psLr = 2mkg/m3 
PC = 0.9 kg/m3 

Xk, = 0.11 kg moisture/kg dry material 

X, = 0.01 kg moisture/kg dry material. 

The drying medium is air and the moist body is the 

row of crude bricks of which properties are obtained 
from the literature [2]. The results of the numerical 
example are shown on Figs. 2-11. On Figs. 2-6 the 
independent variable is the place co-ordinate and the 

parameter is the time. On Figs. 7-11 the situation is 
just opposite. 

Considering Figs. 2 and 7 showing the change of 
the moisture content in the body we can find a 
respectable moisture gradient along its length, which 
may be increased by the intensification of drying 
process causing additional stressed. 

It is seen the distribution of the temperature in the 
drying medium (Figs. 3 and 8) and temperature field 
along the length of the row of bricks (Figs. 4 and 9). 
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Y, m 

FIG. 2. The distribution of the moisture content 
of the moist body vs. length in varying time. 

Y 40.. 
6 

0 0.5 1 1.5 2 2.5 

Y. m 

FIG. 4. The distribution of the temperature of the 
moist body vs. length in varying time. 

The distribution of the moisture contents in the drying 
medium is illustrated on Figs. 5 and 10 showing the 
condensation of the moisture from the air at the begin- 
ning of the drying period. 

These results are in comparison with the results of 
a simpler, lump model mentioned earlier [I]. On Fig. 7 
we can see the deviation in the drying time required 
to achieve a stipulated moisture content is about 
20percent.e.g.atX=0~175,z,=0=5handt,=2.5=6h. 

The total or partial recirculation of the drying 
medium is often used at the batch drying. The model 

120 

110 

100 

Y 

C-J 

--=q 

0.5 1 l.5 2 2.5 

Y, m 

FIG. 3. The distribution of the temperature of the 
drying medium vs. length of the moist body in varying 

0.03 

0 D5 1 1.5 2 2 

Y. m 

c 
.5 

FIG. 5. The distribution of the humidity of the 
drying medium vs. length of the moist body in 

varying time. 

only the boundary conditions. The necessary changes 
are the following: 

xL(O, T) = xL(O,O) if 7 < tb, 

xL(O,r) = $x~(F4.r-z,)+(l-$)x~(O,O) if T 3 TV. 

and 
tL(O, z) = tL(O,O) if t < tb, 

k(O,T) =~~L(FP,~-T~)+(~-~)~~(O,O) if s3 rb 

where the cl/O d $ < 1 is ratio of the recirculation. 
Ic, = 1 means total recirculation (Q is the time of the 

is suitable to describe this process, too, being changed recirculation). 
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FIG. 6. The distribution of the drying rate vs. 
length of the moist body in varying time. 
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FIG. 7. Change in moisture content of the moist 
body. using a constant parameter y. 

FIG. 10. Changes in the humidity of the drying 
medium, using a constant parameter y. 

4 
'12 3 L 5 6 7 8 9 10 11 12 

T, h 

FE. 8. Change in temperature of the drying medium, 
parameter y 

01 ! : : ! ! : : : : ! ! 
01236567 8 9 x) 11 

T. h 

FIG. 9. Change in temperature of the moist body, 
using a constant parameter y. 
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FIG. 11. Changes in the drying rate, using a 
constant parameter f. 

MODEL TWO 

At the earlier model the coefficient of the heat 
conductivity and the coefficient of the mass conduc- 
tivity were supposed infinite in the cross direction and 

we have studied only the change of the properties of 

the drying air and their influence to the drying process. 
Now, we take in account the opposite case. We 

neglect the changes in the drying medium properties 
and consider the dist~butions of the temperature and 
the moisture content in the cross-section of the moist 
body. We assume that the temperature and the moisture 

content are constant in the bulk of the surrounding 
medium. 

Weconsider the heat transport caused by the moisture 

diffusion, too, which is a cross effect from the view of 
the heat transport by conduction. We assumed the 
heat capacity, the density and the coefficient of the 
heat,and mass conductivity of the moist body are 
constant. In this second model we used the dimension- 
less form of the equations which would have been 
artificial in the first one. 

In connection with the numerical solution we give 
an iterative method which is usable for similar com- 
plicated boundary conditions. 

Analysis 
As the first step the heat and mass balance for the 

concentration and thermal boundary layer can be 

written assuming the ratio of their thicks are nearly 
equals. In case of air-water system it is generally 
satisfied. 

Considering Fig. 12 themass balance for the moisture 

being in the drying medium may be written: 

N = r&Q - XrJ. 1131 

t 
N 

c------ _-__ 

i r-7 
I 
I I 
I 

I 
L-e-_ ____ 

t 
II 8, 
i 

N 

FIG. 12. Sketch for the material balance of 
moisture at the diffusion boundary layer 

of the drying medium, 

The heat baiance can be expressed according to 

Fig. 13: 

4s = bko- '+WGiv)(t, - 1~). (14) 

namely 

FIG. 13. Sketch for the heat balance at the 
thermal boundary layer of the drying 

medium. 

Then let us write the heat and mass balance for the 

moist body assuming that c, i. p and D are constant 
and the contraction of the moist body is negligible. 

==O r----l 

z=H 

FIG. 14. Sketch for the material balance of 
the moisture in the moist body. 

Considering Fig. 14 we can write after reducing: 

115) 
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So we can write: 

DC, (&+&dz) (f+df) 

FIG. 15. Sketch for the heat balance in the 
moist body. 

Considering Fig. 15 we can write the heat balance 
in a similar way: 

and 

at a*C c7c l?t ?*Z 

c,, Pno - 
dT 

= cwD-t+cwD---+d,,L 
a2 82 i?z 32 ’ 

SO 

The initial and boundary conditions 
Initial conditions : 

t(O, 2) = to, 

c(0, 2) = co. 
(17) 

Boundary conditions. At first we investigate the heat 
and mass transport at the surface of moist body. 
Because there is not source or sink in the boundary 
layer the total mass of liquid arised by diffusion to 
the surface from the moist body evaporates into the 
drying medium: 

D;(qO) = A’. (W 

Similar boundary condition can be written in connec- 
tion the heat transport, too. One part of the heat flux 
makes themoisturediffused to the surface evaporate and 
the other one raises the temperature of the moist body: 

qs-NrF = -,&,!? & (GO). (19) 

It is assumed here that the moisture is diffusing in 
a liquid state to the surface and the total evaporation 
is achieved there. In order to consider further boundary 
conditions we assume there is not heat or mass transfer 
on the opposite surface of the moist body or they may 
be rather neglected. 

and 

D&H) = 0, 

or rather 

as well as 

XE = dtF, c) (21) 

where the last equation represents the sorption prop- 
erty of the moist body. In order to facilitate the 
managing of these equations we turn to dimensionless 
variables. 

For this sake, we define the following dimensionless 
groups: 

Bi -‘F and Bi(H) = Bi 
w 

a 
Leo = 110 

coDcw’ 

The differential equation system describing the dry- 
ing process in dimensionless form is the following: 

$FO,Bi)=$-$ (15’) 
0 na 

XF = XFCWO, o), t]. (21’) 
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The boundary conditions: Let us consider xj and yj as an approach of the 

solution at fixed Fo = (F&, using the Newton-Raphson 
method we are interested in the solution of the following 
equations: 

-&Fo.O’= cuL-u(Fo,o)l~ f. 
X $+y”+Fo,o) (XF_XL) 

1 
- 

&oJV = $$xr-XL), 
^ 

g(FO,Bi)=O 

g(F,.Bi) = 0. 

(19’) 

(18’) 

if 

(20’ 1 

and 

(17’) 

V~(Xj,yj)+S~(xj,Yj)~f(xj,Yj)=o, 
/ 

V~(Xj,yj)+S~(Xj,Yj)+B(xj,Yj)=o 
aY 

D(Xj9 Yj) Z 0 j= 1.2 ,...,n 

c?f c?f -- 

D= 
ax ay 

% %I 
ax 2y 

The initial conditions: 

~(0, Bi) = 1, 

t(O, Bi) = 1. 

The excepted values of the variables are : 

Oil F,< fee:. - _a and 15~5 +co, 

0 5 Bi = Bi < +m. 

Solution of the nonlinear boundary value problem 

where n is the number of the iterative steps, s and v 

can be calculated and the next approach is : 

Xj+l =Xj+V 

yj+l = yj+S. 

If x1 and y1 are sufficiently near to the solution x,, y, 
the convergence will be rapid. 

To obtain solution to this nonlinear boundary value 
problem, (15)-(21) the finite difference method can be 
used. But to begin the integration we must know the 

values of u(FO,O) and t(FO, 0). There is possibility 
to solve this problem by iteration. We respect two 

approaching values of them and after the procedure 
we control whether the conditions (20) .are satisfied at 

Because the functions f and g are unknown in 

analytical way we must calculate their derivates in 

numerical way, e.g. 

Etxj, yj) z !i'icA;Y~-flxj~Yj) 

f(xj t Yj + A) - f (xj a Yj) 
A 

Bi = 0 si=a 

where A is a sufficiently determined length of the step. 

Numerical solution 
The procedure of the calculation is perceptible 

on Fig. 17. After choosing the initial value of 
UF = uF(Fo,O) = Uo,j for the first step of the iteration 
we Can obtain XF,j from (21). 

FIG. 16. A representation for the iterative 
method. 

Bi = Bi. The idea is represented by Fig. 16. We can 
define the following functions in order to appIy the 

Newton-Raphson method. 

fh Y) 4 g 6% Bi), 

g(x> y) G & (Fo, E), 

(2-Y 

Bi 

ABi 

(23) 

where 
x = 5V0, O), 

y E u(Fo,O). 

In this case the problem can be considered as the 
determination of the set which is constituted by the 
following elements: 

n = (x, y :f(x, y) = g(x, y) = 0 and 0 < F0 < + a}. 

0 Fo-AFo Fo 

FIG. 17. Show of the integration net for 
finite-difference method. 
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Considering the equation (19) we can write: 

= (VI, - VO,j) 

- 

( 

~+~UL-~Uo,j (XF,j-XL), 

> 

from which (du/aBi)o,j can be calculated. Considering 
the derivates in time: 

Vi.j-Ui,j- 1 

AFO ’ 

5i.j- 5i.j- 1 

AFo 

i, j = 0, . . , N, M. 

Knowing the concentration derivates in time and 
considering (15) : 

(&gi,, = ggji,, 
and applying the equation (16) 

so 

($Ji+,,j = (g)i,j+ABi($)i,j. 
and 

(iigi+,.j = (i&)i,j+A$&)i,j~ 
can be calculated, too. 

Afterwards the values of the functions are: 

We have to choose in advance the value of (0.j in 
similar way as the value of the temperature of the 
surface. 

In this way we go on this procedure from i = 0 to 
i = N. We can control whether the initial values of the 
iteration were correctly chosen. 

at au - 
8BiN.j ’ aBiN,j < ’ 

where E > 0 is a chosen limit of the error. If this 
condition is satisfied we can repeat this procedure 
starting at 0, j+ 1 increasing the value of j to ,j+ 1 and 
of course choosing the values of Uo,j+l and to,j+i. If 
this condition is not satisfied we can use the iteration 
method described in the later point. The dates of the 
example illustrating this model are the following: 

z=l 
Le, = 0.60 

Leo = 0.4 

Lena = 0.333; Lu = 3; 

zq = 0.2 

cw = 1 kcal/kg “C 
C~ = 0.24 kcal/kg “C 

cPWG = 0.46 kcal/kg “C 
to = 20°C 
r. = 597 kcal/kg 
q =6. 

In connection with the relation (21) we supposed 
that the partial vapor tension of the moisture could 
be expressed in the following way: 

c 
PF = ptel 

cs50 

where 

Ptel = f(tF). 

The results of the calculation are represented by 
Figs. 18-19. On Figs. 18 and 19 we see the distribution 
of the dimensionless temperature and concentration 
depending on the Fourier number and using constant 
Biot-number as parameter. The figures show clearly 

FIG. 18. Dimensionless moisture content vs. Fourier 
number. 
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FK;. 19. Dimensionless temperature vs. Fourier number. 

that the concentration gradient in the cross-section 
has low values caused by the high value of the coefli- 
cient of the moisture diffusivity in opposite of the 

thermal gradient. It appears from the figures that the 
temperature becomes nearly constant named the wet 
bulb temperature in the different depth of the moist 
body. This temperature is reached by the different 
layers in different time and later their temperatures 
are separated again. This kind of the temperature 
curves were observed at the drying of sand [3]. 
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ETUDE DC’ SECHAGE DISCONTINU 

R&sum&-Cet article propose deux modeies mathtmatiques qui permettent l’etude du mecanisme de 
sechage discontinu. La premiere partie concerne l’influence du changement des proprietes du milieu et 
la seconde considtre l’influence des gradients dans la section transversale. Les modeles proposes sont 
utilisables pour l’etude du sechage de plaques finies avec des proprietes de sorption variables et non 

lintaires. Les solutions numeriques sont illustrtes par des exemples calcults sur ordinateur. 

Z~rnrn~fa~~g-Es werden zwei mathematische Modelle ftir die Wntersuchung der Austrocknung 
vorgeschlagen. Im ersten wird der EinfluB der variablen Eigenschaften des zu trocknenden Mediums 
und im zweiten der EinfluB der Gradienten iiber den Querschnitt beriicksichtigt. Die vorgeschlagenen 
Modelle sind gee&et zur Untersuchung der Trocknung endlicher Platten bei wechselnden und 
nichtlinearisierten Sorptions-Eigenschaften. Die numerische Losung wird durch Beispiele, die mit dem 

Computer gel&t werden, veranschaulicht. 
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llCCJIEflOBAHllE IIEPMO,I@iYECKO~ CYIUKM 

AHiioTalpur- B CTaTbe rIpeAnowceebI ABe MaTeMaTnYecmie MOAeJ?Ei,KoTopble II03BOJISiEOT wccneAo- 

BaTb MeXaHH3M ~ep~oA~Y~K0~ cyumi. B nepsoii YaCTEi sf3yraeTcs BJImHfie ~3MeHeH~~ CB~~CTB 

Te~AOH~~Ten~, 80 BTOpOii YaCm PaCMaTp~~eTC~ B~~~H~e rpaAEeHTOB B IIOiIepeYHOM CeYe&i. 

ITpemaraeMbte MoAeJm M0ry~ IIp~MeH~TbCrt AAX ~c~eAoBaH~~ cylmw OrpaHwYeHHoii n~aCT~Hb1 

IlpSi IIepeMeHHbIX R He~~H~p~3O~HHblX COp6SWOHHb~X CBOfiCTBaX. %fCJIeHHOe FIIIeHNe llO2yYeHO 

HaBbiYWCJIUTeJIbHOfi MaIERHe. 


